Abstract

This article studies the steady-state performance of the least mean square (LMS) adaptive second-order Volterra filter (SOVF) with a zeroth-order term for Gaussian inputs. The mean-square-error (MSE) criterion is evaluated first. Then, SOV LMS algorithm-based updating equations are derived. Next, the steady-state performance of the recursions is analyzed for a random walk model for the unknown system parameters, and the steady-state excess MSE is evaluated. Finally, the theoretical performance predictions are shown to be in good agreement with simulation results, especially for small step sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.