Abstract

The optimal guaranteed cost control problem via static-state feedback controller is addressed in this paper for a class of two-dimensional (2-D) discrete systems described by the Roesser model with norm-bounded uncertainties and a given quadratic cost function. A novel linear matrix inequality (LMI) based criterion for the existence of guaranteed cost controller is established. Furthermore, a convex optimization problem with LMI constraints is formulated to select the optimal guaranteed cost controller which minimizes the guaranteed cost of the closed-loop uncertain system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.