Abstract
This paper is concerned with the reliable guaranteed cost control problem for discrete-time systems with actuator failures and a given quadratic cost function. The problem is to design a reliable guaranteed cost state feedback control law which can tolerate actuator failure, such that the cost function of the closed-loop system is guaranteed to be no more than a certain upper bound. A sufficient condition for the existence of reliable guaranteed cost controllers is derived via the linear matrix inequality (LMI) approach, and a design procedure of such controllers is presented. Furthermore, a convex optimization problem with LMI constraints is formulated to design the optimal reliable guaranteed cost controller which minimizes the upper bound of the closed-loop system cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.