Abstract
This study deals with the problem of robust fault detection for linear time-invariant fractional-order systems (FOSs) assumed to be affected by sensor, actuator and process faults as well as disturbances. The observer-based method was employed to solve the problem, where the detector is an observer. The problem was transformed into the mixed robust optimization problem to make the system disturbance-resistant on one hand and fault-sensitive on the other hand. Then, sufficient conditions were obtained to solve the problem in the linear matrix inequality (LMI) mode. Finally, the effectiveness and superiority of the method were demonstrated by simulating the solutions on a single-input multi-output thermal testing bench.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TELKOMNIKA (Telecommunication Computing Electronics and Control)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.