Abstract

Much of the recent work on robust control or observer design has focused on preservation of stability of the controlled system or the convergence of the observer in the presence of parameter perturbations in the plant or the measurement model. The present work addresses the important problem of stochastic resilience or non-fragility of a discrete-time Luenberger observer which is the maintenance of convergence and/or performance when the observer is erroneously implemented possibly due to computational errors i.e. round off errors in digital implementation or sensor errors, etc. A common linear matrix inequality framework is presented to address the stochastic resilient design problem for various performance criteria in the implementation based on the knowledge of an upper bound on the variance of the random error in the observer gain. Present results are compared to earlier designs for stochastic robustness. Illustrative examples are given to complement the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.