Abstract

In this work, a sensitive low field nuclear magnetic resonance (LF-NMR) homogeneous immunoassay, also called magnetic resonance switch (MRSw) sensor, for Vibrio parahaemolyticus (VP) was developed. Superparamagnetic 2D nanomaterial was designed and used as the magnetic probe of MRSw sensor. It was GO@SPIONs&Ab, a composite nanomaterial with many superparamagnetic Fe3O4 nanoparticles (SPIONs) providing a magnetic signal and VP antibody (Ab) specifically recognizing the target VP evenly distributed on the surface of GO. The presence of VP controllably changed the aggregation state of the probe, eliminating the uncertainty of MRSw sensor type, and thus then achieving a regular variation of transverse relaxation time T2 and ensuing quantitative detection of VP. Triple signal enhancement of the MRSw sensor was obtained due to the application of the designed 2D probe, by increasing the number of SPIONs, improving the magnetic intensity and susceptibility, and forming a synergistic effect. Under optimized experimental conditions, VP could be detected with satisfied sensitivity, selectivity, precision, accuracy, and stability, even in turbid real samples. LOQ for VP was 10 CFU/mL. This detection principle is widely applicable, providing an idea for the construction of highly sensitive MRSw sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call