Abstract
In this paper, a reformed compensation network based on traditional LCL topology is proposed to realize robust reaction to large coupling variation that is common in dynamic wireless charging application. From the perspective of smoothing, the power characteristic against coupling factor and to achieve high efficiency simultaneously, extra reactive element is inserted into the resonant tank to provide higher degree of design freedom, forming the improved LCC type compensated inductive power transfer (IPT) system that features with distinct parameter design approach. Comparing to existing compensation topologies, the optimized LCC compensation topology shows more robust power characteristic against variation of coupling factor and, thus, minimizes the need for complex control which is usually undesired in dynamic charging scheme, thereby helping maintain effective power transfer in dynamic charging application and largely enhancing the systematic controllability. Finally, the effectiveness of the proposed method is experimentally verified. The power transfer profile is smooth against coupling factor to realize high tolerance to position as the power drop is no more than 20% within almost 200% of coupling factor variation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Transactions on Industrial Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.