Abstract

The purpose of this paper is to formulate and prove an L p -L q analog of Miyachi’s theorem for connected nilpotent Lie groups with noncompact center for 2 ≤ p, q ≤ +∞. This allows us to solve the sharpness problem in both Hardy’s and Cowling-Price’s uncertainty principles. When G is of compact center, we show that the aforementioned uncertainty principles fail to hold. Our results extend those of [1], where G is further assumed to be simply connected, p = 2, and q = +∞. When G is more generally exponential solvable, such a principle also holds provided that the center of G is not trivial. Representation theory and a localized Plancherel formula play an important role in the proofs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.