Abstract

We give a new proof of l^2 decoupling for the parabola inspired from efficient congruencing. Making quantitative this proof matches a bound obtained by Bourgain for the discrete restriction problem for the parabola. We illustrate similarities and differences between this new proof and efficient congruencing and the proof of decoupling by Bourgain and Demeter. We also show where tools from decoupling such as l^2L^2 decoupling, Bernstein’s inequality, and ball inflation come into play.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.