Abstract

Prince Rupprecht's larch (Larix principis-rupprechtii Mayr) is a native high-value forest tree species in North China whose clonal propagation through somatic embryogenesis (SE) has the potential to rapidly capture the benefits of breeding or genetic engineering programs and to improve raw material uniformity and quality. To date, research has focused on clarifying the molecular mechanism of SE, but proteomic studies are still in the early stages. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) analysis was performed on three developmental stages of SE in L. principis-rupprechtii in an attempt to identify a wide range of proteins that are regulated differentially during this process. Proteins were extracted and analyzed from the pro-embryogenic mass (PEM), globular embryo (GE), and cotyledon embryo (CE) stages of embryo development. We detected 503 proteins in total and identified 96 proteins expressed differentially during different developmental stages. The identified proteins were analyzed further to provide information about their expression patterns and functions during SE. Four clusters of proteins based on shared expression profiles were generated. Functional analysis showed that proteins involved in primary metabolism, phosphorylation, and oxidation reduction were upregulated during somatic embryo development. This work provides novel insights into the process of larch embryo development in vitro and a basis for further study of the biological process and opportunities for practical application of this knowledge.

Highlights

  • Prince Rupprecht's larch (Larix principis-rupprechtii Mayr) is an important native coniferous tree species in North China that plays a critical role in reforestation programs and commercial use due to its wide ecological plasticity, rapid growth, and desirable wood product

  • When transferred to abscisic acid (ABA)-supplemented medium, pro-embryogenic mass (PEM) advanced through several distinct developmental stages associated with maturation

  • After 7 days of maturation, small globularshaped embryos were visible (Fig. 1C). These embryos continued to enlarge with accompanying suspensor degeneration and differentiated into cotyledon embryo (CE) (Fig. 1D), which could be separated readily from surrounding tissues

Read more

Summary

Objectives

The aim of this study was to identify a wide range of proteins that are regulated differentially during somatic embryo maturation in L. principis-rupprechtii

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call