Abstract

We consider a working-set method for solving large-scale quadratic programming problems for which there is no requirement that the objective function be convex. The methods are iterative at two levels, one level relating to the selection of the current working set, and the second due to the method used to solve the equality-constrained problem for this working set. A preconditioned conjugate gradient method is used for this inner iteration, with the preconditioner chosen especially to ensure feasibility of the iterates. The preconditioner is updated at the conclusion of each outer iteration to ensure that this feasibility requirement persists. The well-known equivalence between the conjugate-gradient and Lanczos methods is exploited when finding directions of negative curvature. Details of an implementation—the Fortran 90 package QPA in the forthcoming GALAHAD library—are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.