Abstract

A stable iterative solver for the simulation of optical waves in metals using finite difference frequency domain (FDFD) method is presented. The corresponding discretization of Maxwell's equations enables simulating electromagnetic waves in structures when materials with negative permittivity are involved. Convergence of the iterative solver is proved for positive and negative permittivities. Numerical results are presented for a thin-film silicon solar cell structure containing silver back contact. Copyright © 2010 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call