Abstract

Mimicking the case of rigid robot arms, the set-point regulation problem for manipulators with flexible links moving under gravity can be solved by either model-based compensation or PID control. The former cannot be applied if an unknown payload is present or when model parameters are poorly estimated, while the latter requires fine and lengthy tuning of gains in order to achieve good performance on the whole workspace. Moreover, no global convergence proof has been yet given for PID control of flexible robot arms. In this paper, a simple iterative scheme is proposed for generating exact gravity compensation at the desired set point, without the knowledge of rigid or flexible dynamic model terms. The control law starts with a PD action on the error at the joint level, updating at discrete instants an additional feedforward term. Global convergence of the scheme is proved under a mild condition on the proportional gain and a structural property on the arm stiffness, which is usually satisfied in practice. Experimental results are presented for a two-link robot with a flexible forearm moving on a tilted plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.