Abstract

The Multidimensional Multiple-choice Knapsack Problem (MMKP) is an important NP-hard combinatorial optimization problem with many applications. We propose a new iterative pseudo-gap enumeration approach to solving MMKPs. The core of our algorithm is a family of additional cuts derived from the reduced costs constraint of the nonbasic variables by reference to a pseudo-gap. We then introduce a strategy to enumerate the pseudo-gap values. Joint with CPLEX, we evaluate our approach on two sets of benchmark instances and compare our results with the best solutions reported by other heuristics in the literature. It discovers 10 new better lower bounds on 37 well-known benchmark instances with a time limit of 1 hour for each instance. We further give direct comparison between our algorithm and one state-of-the-art “reduce and solve” approach on the same machine with the same CPLEX, experimental results show that our algorithm is very competitive, outperforming “reduce and solve” on 18 cases out of 37.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.