Abstract

SummaryStochastic analysis of structure with non‐Gaussian material property and loading in the framework of polynomial chaos (PC) is considered. A new approach for the solution of stochastic mechanics problem with random coefficient is presented. The major focus of the method is to consider reduced size of expansion in an iterative manner to overcome the problem of large system matrix in conventional PC expansion. The iterative method is based on orthogonal expansion of stochastic responses and generation of an iterative PC based on the responses of the previous iteration. The polynomials are evaluated using Gram‐Schmidt orthogonalization process. The numbers of random variables in PC expansion are reduced by considering only the dominant components of the response characteristics, which is evaluated using Karhunen‐Loève (KL) expansion. In case of random material field problem, the KL expansion is used to discretize and simulate the non‐Gaussian random field. Independent component analysis (ICA) is carried out on the non‐Gaussian KL random variables to minimize statistical dependence. The usefulness of the proposed method in terms of accuracy and computational efficiency is examined. From the numerical analysis of three different types of structural mechanics problems, the proposed iterative method is observed to be computationally more efficient and accurate than conventional PC method for solution of linear elastostatic structural mechanics problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.