Abstract
A novel method for solving wave equations with spatial dispersion is presented, suitable for applications to ion cyclotron resonance heating. The method splits the wave operator into a dispersive and a non-dispersive part. The latter can be inverted with e.g. finite element methods. The spatial dispersion is evaluated using a wavelet representation of the dielectric kernel and added by means of iteration. The method has been successfully tested on a low frequency kinetic Alfven wave with second order Larmor radius effects in a nonuniform plasma slab.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.