Abstract
In this paper, we introduce an iterative scheme for finding a common element of the set of fixed points of a nonexpansive mapping, the set of solutions of the variational inequality for an inverse-strongly monotone mapping and the set of solutions of an equilibrium problem in a Hilbert space. We show that the iterative sequence converges strongly to a common element of the three sets. The results of this paper extended and improved the results of H. Iiduka and W. Takahashi [Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005) 341–350] and S. Takahashi and W. Takahashi [Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007) 506–515]. Therefore, by using the above result, an iterative algorithm for the solution of a optimization problem was obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nonlinear Analysis: Theory, Methods & Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.