Abstract

It is well known that the analytical matrices arising from the discretization of distributed parameter systems using the finite element technique are usually symmetric and banded. How to preserve the coefficient matrices of the updated model being of the same band structure is an important yet difficult challenge for model updating in structural dynamics. In this paper, an iterative method for updating mass, damping and stiffness matrices simultaneously based on partial modal measured data is provided. By the method, the optimal updated matrices can be obtained within finite iteration steps by choosing a special kind of initial matrix triplet. The proposed approach not only preserves the physical connectivity of the original model, but also the updated model reproduces the measured modal data, which can be utilized for various finite element model updating problems. Numerical examples confirm the effectiveness of the introduced method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.