Abstract

This work presents an iterative method for modelling the effect of ambient air temperature on the air-cooled organic Rankine cycle. The ambient temperature affects the condenser performance, and hence the performance of the whole cycle, in two ways. First, changing the equilibrium pressure inside the condenser, the turbine outlet pressure and the turbine pressure ratio vary. Since the turbine pressure ratio is a major parameter in determining the power generated by a turbine, the plant output is directly affected. Second, changing the condenser outlet temperature with ambient temperature, the pump inlet and outlet conditions are changed. Thus, the vapourizer equilibrium temperature and pressure are influenced. The developed method iteratively seeks the equilibrium conditions for both the condenser and vapourizer. Two case studies based on a real plant performance have been carried out to demonstrate the validity of the method. The developed method demonstrates robustness and converges regardless of the initial conditions allowed by the physical properties of the working fluid. This method is effective for cycles that use saturated vapour as well as superheated vapour under static or dynamic conditions with appropriate initial conditions and constraints. The developed method may be applied to any Rankine cycle with closed cycle operation. Copyright © 2010 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.