Abstract

A procedure is described for determining the exact maximum-likelihood (ML) estimates of the parameters of a harmonic series (i.e. the fundamental frequency, and the amplitude and phase of each harmonic). Existing ML methods are only approximate in the sense that terms present due to mixing between the harmonics are ignored; these terms asymptotically reduce to zero as the sample size increases to infinity. It is argued that these terms can be significant for short signal lengths. The application of the expectation-maximization algorithm results in an iterative procedure that converges to a stationary point on the true parameter likelihood surface. If global convergence results, this point yields the exact ML estimates. Simulation studies illustrate the advantages of the method when short data lengths are used. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.