Abstract

In this paper, an iterative scheme is proposed to find the roots of a nonlinear equation. It is shown that this iterative method has fourth order convergence in the neighborhood of the root. Based on this iterative scheme, we propose the main contribution of this paper as a new high-order computational algorithm for finding an approximate inverse of a square matrix. The analytical discussions show that this algorithm has fourth-order convergence as well. Next, the iterative method will be extended by theoretical analysis to find the pseudo-inverse (also known as the Moore–Penrose inverse) of a singular or rectangular matrix. Numerical examples are also made on some practical problems to reveal the efficiency of the new algorithm for computing a robust approximate inverse of a real (or complex) matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.