Abstract

Speckle noises are inherent issues in synthetic aperture radar (SAR) images, which hampers the analysis and interpretation of SAR images. In this paper, we propose an iterative low-rank representation algorithm for SAR image despeckling. The original SAR image is first transformed to the logarithmic image, which is then filtered iteratively by the proposed low-rank representation model. Specifically, in each iteration, similar patches measured by the Mahalanobis distance are collected into a group, and then filtered by the nuclear regularized low-rank representation. Finally, all of the filtered patches are aggregated to form the denoised image. Experimental results demonstrate that the proposed algorithm is able to yield state-of-the-art SAR image despeckling performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.