Abstract

In this article, we introduce a new solving framework based on using alternatively two local-search algorithms to solve constraint satisfaction and optimization problems. The technique presented is based on the integration of local-search algorithm as a mechanism to diversify the search instead of using a build on diversification mechanisms. Thus, we avoid tuning the multiple parameters to escape from a local optimum. This technique improves the existing methods: it is generic especially when the given problem can be expressed as a constraint satisfaction problem. We present the way the local-search algorithm can be used to diversify the search in order to solve real examination timetabling problems. We describe how the local-search algorithm can be used to assist any other specific local-search algorithm to escape from local optimality. We showed that such framework is efficient on real benchmarks for timetabling problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call