Abstract

In-line X-ray phase-contrast computed tomography (IL-PCCT) can reveal fine inner structures for low-Z materials (e.g. biological soft tissues), and shows high potential to become clinically applicable. Typically, IL-PCCT utilizes filtered back-projection (FBP) as the standard reconstruction algorithm. However, the FBP algorithm requires a large amount of projection data, and subsequently a large radiation dose is needed to reconstruct a high-quality image, which hampers its clinical application in IL-PCCT. In this study, an iterative reconstruction algorithm for IL-PCCT was proposed by combining the simultaneous algebraic reconstruction technique (SART) with eight-neighbour forward and backward (FAB8) diffusion filtering, and the reconstruction was performed using the Shepp-Logan phantom simulation and a real synchrotron IL-PCCT experiment. The results showed that the proposed algorithm was able to produce high-quality computed tomography images from few-view projections while improving the convergence rate of the computed tomography reconstruction, indicating that the proposed algorithm is an effective method of dose reduction for IL-PCCT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.