Abstract

We develop an iterative, hillclimbing-based assignment algorithm for the approximate solution of discrete-parameter cost minimization problems defined on the pixel sites of an image. While the method is applicable to a number of problems including encoding, decoding, and segmentation, this article focuses on entropy-constrained encoding. For typical statistical image models, the globally optimal solution requires an intractable exhaustive search, while standard greedy methods, though tractable in computation, may be quite suboptimal. Alternatively, our method is guaranteed to perform no worse (and typically performs significantly better) than greedy encoding, yet with manageable increases in complexity. The new approach uses dynamic programming as a local optimization step, repeatedly applied to the rows (or columns) of the image, until convergence. For a DCT framework, with entropy-constrained TCQ applied to the coefficient sources, the new method gains as much as 0.8 dB over standard greedy encoding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.