Abstract

We consider the problem of low rank matrix recovery in a stochastically noisy high-dimensional setting. We propose a new estimator for the low rank matrix, based on the iterative hard thresholding method, that is computationally efficient and simple. We prove that our estimator is optimal in terms of the Frobenius risk and in terms of the entry-wise risk uniformly over any change of orthonormal basis, allowing us to provide the limiting distribution of the estimator. When the design is Gaussian, we prove that the entry-wise bias of the limiting distribution of the estimator is small, which is of interest for constructing tests and confidence sets for low-dimensional subsets of entries of the low rank matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call