Abstract

The contours and segments of objects in digital images have many important applications. Contour extractions of gray images can be converted into contour extractions of binary images. This paper presents a novel contour-extraction algorithm for binary images and provides a deduction theory for this algorithm. First, we discuss the method used to construct convex hulls of regions of objects. The contour of an object evolves from a convex polygon until the exact boundary is obtained. Second, the projection methods from lines to objects are studied, in which, a polygon iteration method is presented using linear projection. The result of the iteration is the contour of the object region. Lastly, addressing the problem that direct projections probably cannot find correct projection points, an effective discrete ray-projection method is presented. Comparisons with other contour deformation algorithms show that the algorithm in the present paper is very robust with respect to the shapes of the object regions. Numerical tests show that time consumption is primarily concentrated on convex hull computation, and the implementation efficiency of the program can satisfy the requirement of interactive operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call