Abstract

Makespan-minimized multi-agent path planning (MAPP) seeks to minimize the time taken by the slowest of n agents to reach its destination and this is essentially a minimax-constrained optimization problem. In this work, an iterative max-min improvement (IMMI) algorithm is proposed to approximate the optimal solution of the makespan-minimized MAPP problem. At each iteration, a linear maximization problem is solved using a simplex method followed by a computationally hard MAPP minimization problem that is solved using a local search approach. To keep the local search from being trapped in an unfeasible solution, a Guided Local Search technique is proposed. Comparative results with other MAPP algorithms suggest that the proposed IMMI algorithm strikes a good tradeoff between the ability to find feasible solutions that can be traversed quickly and the computational time incurred in determining these paths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.