Abstract

This paper presents an iterative and analytical approach to optimal synthesis of a multiplexer with a star-junction. Two types of commonly used lumped-element junction models, namely, nonresonant node (NRN) type and resonant type, are considered and treated in a uniform way. A new circuit equivalence called phased-inverter to frequency-invariant reactance inverter transformation is introduced. It allows direct adoption of the optimal synthesis theory of a bandpass filter for synthesizing channel filters connected to a star-junction by converting the synthesized phase shift to the susceptance compensation at the junction. Since each channel filter is dealt with individually and alternately, when synthesizing a multiplexer with a high number of channels, good accuracy can still be maintained. Therefore, the approach can be used to synthesize a wide range of multiplexers. Illustrative examples of synthesizing a diplexer with a common resonant type of junction and a triplexer with an NRN type of junction are given to demonstrate the effectiveness of the proposed approach. A prototype of a coaxial resonator diplexer according to the synthesized circuit model is fabricated to validate the synthesized result. Excellent agreement is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.