Abstract

The construction of shortest feedback shift registers for a finite sequence S_1,...,S_N is considered over the finite ring Z_{p^r}. A novel algorithm is presented that yields a parametrization of all shortest feedback shift registers for the sequence of numbers S_1,...,S_N, thus solving an open problem in the literature. The algorithm iteratively processes each number, starting with S_1, and constructs at each step a particular type of minimal Gr\"obner basis. The construction involves a simple update rule at each step which leads to computational efficiency. It is shown that the algorithm simultaneously computes a similar parametrization for the reciprocal sequence S_N,...,S_1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.