Abstract
AbstractRobust low‐rank tensor completion plays an important role in multidimensional data analysis against different degradations, such as sparse noise, and missing entries, and has a variety of applications in image processing and computer vision. In this paper, an optimization model for low‐rank tensor completion problems is proposed and a block coordinate descent algorithm is developed to solve this model. It is shown that for one of the subproblems, the closed‐form solution exists and for the other, a Riemannian conjugate gradient algorithm is used. In particular, when all elements are known, that is, no missing values, the block coordinate descent is simplified in the sense that both subproblems have closed‐form solutions. The convergence analysis is established without requiring the latter subproblem to be solved exactly. Numerical experiments illustrate that the proposed model with the algorithm is feasible and effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.