Abstract

AbstractThis paper proposes an iterative algorithm to solve the inverse displacement for a hyper-redundant elephant’s trunk robot (HRETR). In this algorithm, each parallel module is regarded as a geometric line segment and point model. According to the forward approximation and inverse pose adjustment principles, the iteration process can be divided into forward and backward iteration. This iterative algorithm transforms the inverse displacement problem of the HRETR into the parallel module’s inverse displacement problem. Considering the mechanical joint constraints, multiple iterations are carried out to ensure that the robot satisfies the required position error. Simulation results show that the algorithm is effective in solving the inverse displacement problem of HRETR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.