Abstract
Insertion and deletion (indel) sequencing errors in DNA coding regions disrupt DNA-to-protein translation frames, and hence make most frame-sensitive coding recognition approaches fail. This paper extends the authors' previous work on indel detection and "correction" algorithms, and presents a more effective algorithm for localizing indels that appear in DNA coding regions and "correcting" the located indels by inserting or deleting DNA bases. The algorithm localizes indels by discovering changes of the preferred translation frames within presumed coding regions, and then "corrects" them to restore a consistent translation frame within each coding region. An iterative strategy is exploited to repeatedly localize and "correct" indels until no more indels can be found. Test results have shown that this improved algorithm can detect and "correct" more indels while not worsening the rate of introduction of false indels when compared to the authors' previous work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of computational biology : a journal of computational molecular cell biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.