Abstract
According to the Arnold conjectures and Floer's proofs, there are non-trivial lower bounds for the number of periodic solutions of Hamiltonian differential equations on a closed symplectic manifold whose symplectic form vanishes on spheres. We use an iterated graph construction and Lagrangian Floer homology to show that these lower bounds also hold for certain Hamiltonian delay equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.