Abstract
This paper introduces a new neighborhood search technique, called dynasearch, that uses dynamic programming to search an exponential size neighborhood in polynomial time. While traditional local search algorithms make a single move at each iteration, dynasearch allows a series of moves to be performed. The aim is for the lookahead capabilities of dynasearch to prevent the search from being attracted to poor local optima. We evaluate dynasearch by applying it to the problem of scheduling jobs on a single machine to minimize the total weighted tardiness of the jobs. Dynasearch is more effective than traditional first-improve or best-improve descent in our computational tests. Furthermore, this superiority is much greater for starting solutions close to previous local minima. Computational results also show that an iterated dynasearch algorithm in which descents are performed a few random moves away from previous local minima is superior to other known local search procedures for the total weighted tardiness scheduling problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.