Abstract

In this investigation report, we present a perfect charged fluid solution for a static and spherically symmetric spacetime; for its construction, we suppose a metric potential, [Formula: see text], and a specific form of the electric field’s intensity, [Formula: see text], in such a manner that the resulting stellar model is physically acceptable and stable. The model presented depends on two parameters [Formula: see text] related to the compactness and the magnitude of the electric field and these same parameters will generate different possibilities for the behavior of the speed of sound. For the particular case in which [Formula: see text], we obtain once more a chargeless model constructed previously, the compactness for the charged model case is greater than in the chargeless case. As an effect of the charge, the model admits two regions for the parameter [Formula: see text], in one of these the speed of sound is a monotonic decreasing function and in the other it is a monotonic increasing function. By means of a numerical analysis, it is shown that the orders of magnitude associated to the pressure and density are characteristic of the compact stars. In particular for [Formula: see text], the range of [Formula: see text], which implies that the radius of an object with mass [Formula: see text] is found between 6554.620 m and 7672.702 m with a maximum central density of [Formula: see text].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.