Abstract

An isotopic effect was observed in solutions of self-assembling (SA) amphiphilic block copolymers: it was found that the micellization enthalpy, temperature and the size of the formed micelles are affected by replacing H2O by D2O. The SA of solvated block-copolymers (poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide)) in H2O, D2O and their mixtures was investigated as a function of temperature. High sensitivity differential scanning calorimetry revealed that the micellization temperature is reduced, and the enthalpic penalty of the transition and size of the formed micelles increase when H2O is exchanged by D2O. Molecular theory calculations suggest that the difference in the hydrogen bond strength of the solvent, H2O or D2O, is the origin of the different structural and conformational properties of the solvated block copolymers. The differences in the solvent properties were predicted to modify the solubility and consequently the SA of the polymers in the two solvents, as experimentally measured. The study provides an insight into the role of hydrogen bonding in systems of amphiphilic block copolymers, and suggests that in SA polymers small differences in hydrogen-bonding strength of the solvent may result in observable macroscopic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.