Abstract

The lactose permease of Escherichia coli transports protons and lactose across the plasma membrane and uses a transmembrane ion gradient as the energy source to drive the uphill accumulation of lactose. In this report, the effect of the electrochemical gradient on the permease has been studied. Bacteriorhodopsin was co-reconstituted with the lactose permease to provide a light-triggered electrochemical gradient. Reaction-induced Fourier transform infrared spectra were acquired, and bacteriorhodopsin contributions were subtracted. In previous work, positive bands in the 1765-1730 cm(-1) region of the reaction-induced FT-IR spectrum were attributed to the perturbation of carboxylic acid residues in the permease [Patzlaff, J. S., Brooker, R. J., and Barry, B. A. (2000) J. Biol. Chem. 275, 28695-28700]. In this study, we have globally labeled the permease with (13)C or (15)N. Isotopic labeling demonstrates that features in the reaction-induced FT-IR spectrum arise from permease carboxylic acid, amide I, and amide II vibrational modes. In addition, isotope labeling leads to a tentative assignment of spectral features to lysine, arginine, histidine, glutamine, and/or asparagine in the permease. These results indicate that the electrochemical gradient causes changes in the environment or protonation state of carboxylic acid residues in the permease and suggest an interaction between these carboxylic acid side chains and nitrogen-containing amino acid side chains. Evidence for a change in secondary structure, corresponding to an interconversion of secondary structural elements, a change in the hydrogen-bonding strength, or coupling of peptide vibrational modes, is also presented. These experiments demonstrate the usefulness of reaction-induced spectroscopy in the study of transmembrane transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.