Abstract

O-linked N-acetylglucosamine ( O-GlcNAc) is a ubiquitous post-translational modification of proteins and is essential for cell function. Quantifying the dynamics of O-GlcNAcylation in a proteome-wide level is critical for uncovering cellular mechanisms and functional roles of O-GlcNAcylation in cells. Here, we develop an isotope-coded photocleavable probe for profiling protein O-GlcNAcylation dynamics using quantitative mass spectrometry-based proteomics. This probe enables selective tagging and isotopic labeling of O-GlcNAcylated proteins in one step from complex cellular mixtures. We demonstrate the application of the probe to quantitatively profile O-GlcNAcylation sites in 293T cells upon chemical induction of O-GlcNAc levels. We further applied the probe to quantitatively analyze the stoichiometry of O-GlcNAcylation between sorafenib-sensitive and sorafenib-resistant liver cancer cells, which lays the foundation for mechanistic investigation of O-GlcNAcylation in regulating cancer chemoresistance. Thus, this probe provides a powerful tool to profile O-GlcNAcylation dynamics in cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call