Abstract
By making use of an isospectral transformation, an isospectral matrix with non-zero trace is turned into a zero-trace one. With the help of the simple loop algebra A 1 and the Tu scheme, a soliton-equation hierarchy is generated under the framework of the zero curvature equation. By employing the trace identity, its Hamiltonian structure is obtained. Then, we enlarge the Lie algebra A 1 into three kinds of Lie algebras, which are devote to investigating integrable couplings. The corresponding three types of integrable couplings are worked out, one of them has Hamiltonian structure which is obtained by the quadratic-form identify. The approach for generating integrable couplings has extensive applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.