Abstract

In order to increase the efficiency of modern microprocessors power supplies used in data centers, the 48-V dc distribution bus is gaining growing attention. For such applications, voltage regulation modules (VRMs) are currently obtained using two-stage conversion systems with an intermediate 12-V dc bus. This paper presents an innovative single-stage approach for the 48-V VRM based on a quasi-resonant constant on-time (COT) operation. The proposed topology inherently integrates the multiphase approach, providing fast phase shedding and flat high-efficiency curves even at light load conditions. This is a unique advantage, usually not available in the two-stage approach, that is very important in server architectures, where high efficiency is required even at light load conditions. The paper analyses the circuit topology, and proposes a control architecture for fast transient response, including the current sharing capabilities, and a solution for implementing the integrated magnetics. The digital controller has been implemented in 0.16- $\mu$ m lithography together with a digital pulse-width-modulation with a 195 ps resolution, and a 40 MS/s, 7-bit ADC. Experimental results show an efficiency of 93.1% for a 250 A, 1.8 V VRM, and of 93.2% for a 102 A, 1.2-V double data rate (DDR) power supply.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.