Abstract

In recent years, electroactive paper emerged as a new alternative in the field of smart actuators. It is based on a cellulose material which is able to bend under the influence of an external electric field similarly as ionic polymer metal composites. The bending mechanism is mainly attributed to the migration of ionic charges over the thickness of a thin sheet of paper. The present contribution proposes a numerical framework for the simulation of electroactive paper. It is based on a scaled boundary plate formulation for isogeometric analysis. In contrast to the standard scaled boundary plate approach, the scaling direction is solved numerically by a B-Spline approximation. This allows to render nonlinear effects over the plate thickness as well as displacement fields of higher continuity. The model is applicable to very thin structures such as electroactive paper, and it also captures the nonlinear ionic charge distribution which is coupled to the bending mechanism of the actuator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call