Abstract

Neurons exhibit remarkably complex geometry in their neurite networks. So far, how materials are transported in the complex geometry for survival and function of neurons remains an unanswered question. Answering this question is fundamental to understanding the physiology and disease of neurons. Here, we have developed an isogeometric analysis (IGA) based platform for material transport simulation in neurite networks. We modeled the transport process by reaction-diffusion-transport equations and represented geometry of the networks using truncated hierarchical tricubic B-splines (THB-spline3D). We solved the Navier-Stokes equations to obtain the velocity field of material transport in the networks. We then solved the transport equations using the streamline upwind/Petrov-Galerkin (SU/PG) method. Using our IGA solver, we simulated material transport in three basic models of the network geometry: a single neurite, a neurite bifurcation, and a neurite tree with three bifurcations. In addition, the robustness of our solver is illustrated by simulating material transport in three representative and complex neurite networks. From the simulation we discovered several spatial patterns of the transport process. Together, our simulation provides key insights into how material transport in neurite networks is mediated by their complex geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.