Abstract

Snakebite is a neglected disease and serious health problem in Brazil, with most bites being caused by snakes of the genus Bothrops. Although serum therapy is the primary treatment for systemic envenomation, it is generally ineffective in neutralizing the local effects of these venoms. In this work, we examined the ability of 7,8,3'-trihydroxy-4'-methoxyisoflavone (TM), an isoflavone from Dipteryx alata, to neutralize the neurotoxicity (in mouse phrenic nerve-diaphragm preparations) and myotoxicity (assessed by light microscopy) of Bothrops jararacussu snake venom in vitro. The toxicity of TM was assessed using the Salmonella microsome assay (Ames test). Incubation with TM alone (200 μg/mL) did not alter the muscle twitch tension whereas incubation with venom (40 μg/mL) caused irreversible paralysis. Preincubation of TM (200 μg/mL) with venom attenuated the venom-induced neuromuscular blockade by 84% ± 5% (mean ± SEM; n = 4). The neuromuscular blockade caused by bothropstoxin-I (BthTX-I), the major myotoxic PLA2 of this venom, was also attenuated by TM. Histological analysis of diaphragm muscle incubated with TM showed that most fibers were preserved (only 9.2% ± 1.7% were damaged; n = 4) compared to venom alone (50.3% ± 5.4% of fibers damaged; n = 3), and preincubation of TM with venom significantly attenuated the venom-induced damage (only 17% ± 3.4% of fibers damaged; n = 3; p < 0.05 compared to venom alone). TM showed no mutagenicity in the Ames test using Salmonella strains TA98 and TA97a with (+S9) and without (−S9) metabolic activation. These findings indicate that TM is a potentially useful compound for antagonizing the neuromuscular effects (neurotoxicity and myotoxicity) of B. jararacussu venom.

Highlights

  • Envenomation by Bothrops snakes is characterized by local and systemic manifestations [1]

  • This work was based on three premises: (1) an understanding of the principal clinical manifestations of B. jararacussu envenomation [1]; (2) the low efficacy of antivenom against the local effects of Bothrops venoms [18,19]; and (3) the availability of a molecule, 7,8,3'-trihydroxy-4'-methoxyisoflavone (TM) from D. alata, with potentially interesting activity against B. jararacussu snake venom

  • D. alata bark [32] showed the best activity out of 11 fractions when tested against the neuromuscular activity of B. jararacussu venom [31]

Read more

Summary

Introduction

Envenomation by Bothrops snakes is characterized by local (pain, edema, inflammation, blistering, hemorrhage and necrosis) and systemic (coagulopathy, systemic hemorrhage, acute kidney injury and circulatory shock) manifestations [1]. Brazil and northern Argentina [2] Envenomation by this species shares many of the foregoing features with other Bothrops species [3], with most of the clinical manifestations of envenoming being mediated predominantly by snake venom metalloproteases (SVMPs), serine proteases, phospholipases (PLA2) and C-type lectins. Several studies have shown that the neurotoxic and myotoxic effects of B. jararacussu venom and its PLA2 myotoxins can be neutralized by some plant extracts and their isolated compounds [21,22,23,24,25,26,27,28,29,30]. The mutagenicity (toxicity) of TM, as an indicator of it potential use as a clinical agent, was assessed in the Ames test using Salmonella strains TA 98 and TA 97a

Results and Discussion
Molecule
Pharmacological Assays
Quantitative Histological Analysis
Salmonella Mutagenicity Assay
Plant Material and Extraction
Isoflavone Solubilization
Venom and Purification of BthTX-I
Animals
In vitro Mutagenicity Assay
Statistical Analysis
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call