Abstract
Sequence-specific recognition of duplex DNA mediated by triple helix formation offers a potential basis for oligonucleotide therapy and biotechnology. However, triplex formation is limited mostly to homopurine strands, due to poor stabilization at CG or TA base pairs in the target duplex DNA sequences. Several non-natural nucleosides have been designed for the recognition of CG or TA base pairs within an antiparallel triplex DNA. Nevertheless, problems including low selectivity and high dependence on the neighboring bases remain unsolved. We thus synthesized N(2)-arylmethyl isodC derivatives and incorporated them into triplex-forming oligonucleotides (TFOs) for the selective recognition of the CG base pair within antiparallel triplex DNA. It was shown that an isodC derivative bearing a 2-amino-6-methylpyridine moiety (AP-isodC) recognizes the CG base pair with high selectivity in antiparallel triplex DNA irrespective of the flanking base pairs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.