Abstract

This paper presents the design and fabrication of a coplanar waveguide (CPW) rectenna using a sequential modular approach. The rectenna is printed on high permittivity, low-loss board ARLON AD1000 (r = 10.35 and tan δ = 0.0023 @ 10 GHz). The rectifier section is realized with a single reverse-biased schottky diode SMS-7630 in reverse topology for which a diode model is obtained at −20 dBm for frequencies F 0 = 2.45 GHz and 2F 0 = 4.9 GHz. The low-pass filter and the impedance matching are synthesized from passive CPW structures. Co-simulation technique is used to overcome CPW simulation limitations and to integrate the diode characteristics. The antenna consists of a circular slot loop antenna with stub matching such that its input impedance is close to 50 Ω. The goal of this work is to design a rectifier to simplify and speed up the fabrication process of a rectenna array. We reduced the number of processes to etch the rectifier on the board and minimized the number of lumped elements. At −20 dBm, simulation of the rectifier with an ideal impedance matching network shows rectification at 2.45 GHz with efficiency of 12.8%. The rectifier and rectenna show efficiency of approximately 10% at an operating frequency of 2.48 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.