Abstract

SUMMARY Lattice methods are a class of numerical scheme which represent a medium as a connection of interacting nodes or particles. In the case of modelling seismic wave propagation, the interaction term is determined from Hooke’s Law including a bond-bending term. This approach has been shown to model isotropic seismic wave propagation in an elastic or viscoelastic medium by selecting the appropriate underlying lattice structure. To predetermine the material constants, this methodology has been restricted to regular grids, hexagonal or square in 2-D or cubic in 3-D. Here, we present a method for isotropic elastic wave propagation where we can remove this lattice restriction. The methodology is outlined and a relationship between the elasticmaterial properties and an irregular latticegeometry arederived. The numerical method is compared with an analytical solution for wave propagation in an infinite homogeneous body along with comparing the method with a numerical solution for a layered elastic medium. The dispersion properties of this method are derived from a plane wave analysis showing the scheme is more dispersive than a regular lattice method. Therefore, the computational costs of using an irregular lattice are higher. However, by removing the regular lattice structure the anisotropic nature of fracture propagation in such methods can be removed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.