Abstract

Pancreatic cancer is an aggressive and challenging malignancy with limited treatment options, largely attributed to the dense tumor stroma and intrinsic drug resistance. Here, we introduce a novel iron-containing nanoparticle formulation termed PTFE, loaded with the ferroptosis inducer Erastin, to overcome these obstacles and enhance pancreatic cancer therapy. The PTFE nanoparticles were prepared through a one-step assembly process, consisting of an Erastin-loaded PLGA core stabilized by a MOF shell formed by coordination between Fe3+ and tannic acid. PTFE demonstrated a unique capability to repolarize tumor-associated macrophages (TAMs) into the M1 phenotype, leading to the regulation of dense tumor stroma by modulating the activation of tumor-associated fibroblasts (TAFs) and reducing collagen deposition. This resulted in enhanced nanoparticle accumulation and deep penetration, as confirmed by in vitro multicellular tumor spheroids and in vivo mesenchymal-rich subcutaneous pancreatic tumor models. Moreover, PTFE effectively combated tumor resistance by synergistically employing the Fe3+-induced Fenton reaction and Erastin-induced ferroptosis, thereby disrupting the redox balance. As a result, significant tumor growth inhibition was achieved in mice-bearing tumor model. Comprehensive safety evaluations demonstrated PTFE's favorable biocompatibility, highlighting its potential as a promising therapeutic platform to effectively address the formidable challenges in pancreatic cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.