Abstract

Controlled surface functionalization with azides to perform on surface "click chemistry" is desired for a large range of fields such as material engineering and biosensors. In this work, the stability of an azido-containing self-assembled monolayer in high vacuum is investigated using in situ Fourier transform infrared spectroscopy. The intensity of the antisymmetric azide stretching vibration is found to decrease over time, suggesting the degradation of the azido-group in high vacuum. The degradation is further investigated at three different temperatures and at seven different nitrogen pressures ranging from 1 × 10-6 mbar to 5 × 10-3 mbar. The degradation is found to increase at higher temperatures and at lower nitrogen pressures. The latter supporting the theory that the degradation reaction involves the decomposition into molecular nitrogen. For the condition with the highest degradation detected, only 63% of azides is found to remain at the surface after 8 h in vacuum. The findings show a significant loss in control of the surface functionalization. The instability of azides in high vacuum should therefore always be considered when depositing or postprocessing azido-containing layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.