Abstract

Patients diagnosed with diabetes mellitus must monitor their blood glucose levels in order to control the glycaemia. Consequently, they must perform a capillary test at least three times per day and, besides that, a laboratory test once or twice per month. These standard methods pose difficulty for patients since they need to prick their finger in order to determine the glucose concentration, yielding discomfort and distress. In this paper, an Internet of Things (IoT)-based framework for non-invasive blood glucose monitoring is described. The system is based on Raspberry Pi Zero (RPi) energised with a power bank, using a visible laser beam and a Raspberry Pi Camera, all implemented in a glove. Data for the non-invasive monitoring is acquired by the RPi Zero taking a set of pictures of the user fingertip and computing their histograms. Generated data is processed by an artificial neural network (ANN) implemented on a Flask microservice using the Tensorflow libraries. In this paper, all measurements were performed in vivo and the obtained data was validated against laboratory blood tests by means of the mean absolute error (10.37%) and Clarke grid error (90.32% in zone A). Estimated glucose values can be harvested by an end device such as a smartphone for monitoring purposes.

Highlights

  • The Internet of Things (IoT) is a paradigm in which different devices used on a day-to-day basis have the ability to communicate with other devices, whether or not they are of the same type, with the aim of providing services through the internet

  • The presented results (Clark grid error = 90.32% in zone A, mean absolute error (MAE) = 10.37) suggests that our approach is competitive with those found in the literature: E

  • Even with the promising results that IoT technology could bring, there are no new works that suggest the methodology for its implementation in a cloud device or devices of daily use

Read more

Summary

Introduction

The Internet of Things (IoT) is a paradigm in which different devices used on a day-to-day basis have the ability to communicate with other devices, whether or not they are of the same type, with the aim of providing services through the internet. These devices can be household objects (lamps or appliances), street objects, or embedded devices especially created for particular applications; they are all called “things”. Despite the fact that the IoT has been extensively applied to almost every area in everyday life, it has brought the opportunity to tackle problems in priority domains. The development and modernisation of health services constitute a major challenge for healthcare

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call